Mechanisms of H2O2-induced oxidative stress in endothelial cells exposed to physiologic shear stress.
نویسندگان
چکیده
Hydrogen peroxide (H2O2) is produced by inflammatory and vascular cells and induces oxidative stress, which may contribute to vascular disease and endothelial cell dysfunction. In smooth muscle cells, H2O2 induces production of O2 by activating NADPH oxidase. However, the mechanisms whereby H2O2 induces oxidative stress in endothelial cells are not well understood, although O2 may play a role. Recent studies have documented increased O2 in endothelial cells exposed to H2O2 via uncoupled nitric oxide synthase (NOS) and NADPH oxidase under static conditions. To assess responses to H2O2 in porcine aortic endothelial cells (PAEC) under shearing conditions, a constant flow rate of 24. 4 ml/min was applied to produce physiologically relevant shear stress (8. 2 dynes/cm). Here we demonstrate that treatment with 100 muM H2O2 increases intracellular O2 levels in PAEC. In addition, we demonstrate that l-NAME, an inhibitor of NOS, and apocynin, an inhibitor of NADPH oxidase, reduced O2 levels in PAEC treated with H2O2 under physiologic shear suggesting that both NOS and NADPH oxidase contribute to H2O2-induced O2 in PAEC. Co-inhibition of NOS and NADPH oxidase also reduced intracellular O2 levels under shear. We conclude that H2O2-induced oxidative stress in endothelial cells exhibits increased intracellular O2 levels through NOS and NADPH oxidase under shear. The inhibition of NOS and NADPH with H2O2 exposure is nonlinear, suggesting some interdependent or compensating system within endothelial cells. These findings suggest a complex interaction between H2O2 and oxidant-generating enzymes that may contribute to endothelial dysfunction in cardiovascular diseases.
منابع مشابه
Cytoprotective Effect of Hydroalcoholic Extract of Pinus eldarica Bark against H2O2-Induced Oxidative Stress in Human Endothelial Cells
Background: Pinus eldarica is a widely growing pine in Iran consisting of biologically active constituents with antioxidant properties. This study investigates the effect of hydroalcoholic extract of P. eldarica bark against oxidative damage induced by hydrogen peroxide (H2O2) in human umbilical vein endothelial cells (HUVECs). Methods: The total phenolic content of p. eldarica extract was dete...
متن کاملCytoprotective and antioxidant effects of Echium amoenum anthocyanin-rich extract in human endothelial cells (HUVECs)
Objective: Echium amoenum Fisch. & C.A. Mey. is used for the treatment of various diseases in traditional medicine. This plant is a major source of anthocyanins with beneficial cardiovascular properties such as anti-atherosclerotic and antihypertensive effects. In the present study, the protective and antioxidant effects of anthocyanin-rich E. amoenum extract were evaluated on human vascular en...
متن کاملGreen tea extract protects endothelial progenitor cells from oxidative insult through reduction of intracellular reactive oxygen species activity
Objective(s):Many studies have reported that tea consumption decreases cardiovascular risk, but the mechanisms remain unclear. Green tea is known to have potent antioxidant and free radical scavengingactivities. This study aimed to investigate whether green tea extract (GTE) can protect endothelial progenitors cells (EPCs) against oxidative stress through antioxidant mechanisms. Materials and M...
متن کاملThe effect of hydroalcoholic extract of Otostegia persica (Burm.) Boiss. against H2O2-induced oxidative stress in human endothelial cells
Background and objectives: Otostegia persica (Burm.) Boiss. is an endemic plant of Iran with various applications in traditional medicine which contains of several antioxidant constituents. This research was aimed to investigate the effect of hydroalcoholic extract from O. persica aerial parts in human umbilical vein endothelial cells (HUVECs) using hydrogen p...
متن کاملAldosterone Induces Oxidative Stress Via NADPH Oxidase and Downregulates the Endothelial NO Synthesase in Human Endothelial Cells
Aldosterone is traditionally viewed as a hormone regulating electrolyte and blood pressure homeostasis. Recent studies suggest that Aldo can cause microvascular damage, oxidative stress and endothelial dysfunction. However, its exact cellular mechanisms remain obscure. This study was undertaken to examine the effect of Aldo on superoxide production in human umbilical artery endothelial cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Free radical biology & medicine
دوره 40 12 شماره
صفحات -
تاریخ انتشار 2006